4.6 Article

London penetration depth and pair breaking

期刊

PHYSICAL REVIEW B
卷 88, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.224508

关键词

-

资金

  1. U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-07CH11358]
  2. Center for Emergent Superconductivity, an Energy Frontier Research Center
  3. U.S. DOE, Office of Science [DE-AC0298CH1088]

向作者/读者索取更多资源

The London penetration depth is evaluated for isotropic materials for any transport and pair-breaking Born scattering rates. Besides known results, a number of features are found. The slope vertical bar d rho/d theta vertical bar of the normalized superfluid density rho = lambda(2)(0)/lambda(2)(theta) at the transition theta = T/T-c = 1 has a minimum near the value of the pair-breaking parameter separating gapped and gapless states. The low-T exponentially flat part of rho for the s-wave materials is suppressed by increasing pair breaking. For strong T-c suppression by magnetic impurities the Homes scaling lambda(-2)(0) proportional to sigma T-c with sigma being the normal conductivity gives way to lambda(-2)(0) proportional to sigma T-c(2). For the d-wave order parameter, the transport and spin-flip Born scattering rates enter the theory only as a sum; in particular, they affect the T-c depression in the same manner. We confirm that the linear low-temperature behavior of rho in a broad range of the combined scattering parameter turns to the T-2 behavior only when the critical temperature is suppressed at least by a factor of 3 relative to the clean limit T-c0. Moreover, in this range, rho(theta) is only weakly dependent on the scattering parameter, i.e., it is nearly universal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据