4.6 Article

Engineering Weyl nodes in Dirac semimetals by a magnetic field

期刊

PHYSICAL REVIEW B
卷 88, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.165105

关键词

-

资金

  1. European FP7 program [SIMTECH 246937]
  2. SFFR of Ukraine [F53.2/028]
  3. Grant STCU [5716-2]
  4. Natural Sciences and Engineering Research Council of Canada
  5. US National Science Foundation [PHY-0969844]
  6. Division Of Physics
  7. Direct For Mathematical & Physical Scien [0969844] Funding Source: National Science Foundation

向作者/读者索取更多资源

We study the phase diagram of a Dirac semimetal in a magnetic field at a nonzero charge density. It is shown that there exists a critical value of the chemical potential at which a first-order phase transition takes place. At subcritical values of the chemical potential the ground state is a gapped state with a dynamically generated Dirac mass and a broken chiral symmetry. The supercritical phase is the normal (gapless) phase with a nontrivial chiral structure: it is a Weyl semimetal with a pair of Weyl nodes for each of the original Dirac points. The nodes are separated by a dynamically induced chiral shift. The direction of the chiral shift coincides with that of the magnetic field and its magnitude is determined by the quasiparticle charge density, the strength of the magnetic field, and the strength of the interaction. The rearrangement of the Fermi surface accompanying this phase transition is described.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据