4.6 Article

Algebraic and geometric mean density of states in topological Anderson insulators

期刊

PHYSICAL REVIEW B
卷 88, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.88.195145

关键词

-

资金

  1. Research Grant Council of Hong Kong [HKU 7051/11P]
  2. NSFC [11204294]
  3. 973 Program [2013CB933304]

向作者/读者索取更多资源

Algebraic and geometric mean density of states in disordered systems may reveal properties of electronic localization. In order to understand the topological phases with disorder in two dimensions, we present the calculated density of states for the disordered Bernevig-Hughes-Zhang model. The topological phase is characterized by a perfectly quantized conducting plateau, carried by helical edge states, in a two-terminal setup. In the presence of disorder, the bulk of the topological phase is either a band insulator or an Anderson insulator. Both of them can protect edge states from backscattering. The topological phases are explicitly distinguished as a topological band insulator or a topological Anderson insulator from the ratio of the algebraic mean density of states to the geometric mean density of states. The calculation reveals that the topological Anderson insulator can be induced by disorders from either a topologically trivial band insulator or a topologically nontrivial band insulator.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据