4.6 Article

Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides

期刊

PHYSICAL REVIEW B
卷 85, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.081109

关键词

-

资金

  1. NSF MRSEC [DMR05-20415]
  2. NSF [CHE-0321368, DMR070072N]

向作者/读者索取更多资源

We investigate the behavior of holes in the valence band of a range of wide-band-gap oxides including ZnO, MgO, In2O3, Ga2O3, Al2O3, SnO2, SiO2, and TiO2. Based on hybrid functional calculations, we find that, due to the orbital composition of the valence band, holes tend to form localized small polarons with characteristic lattice distortions, even in the absence of defects or impurities. These self-trapped holes (STHs) are energetically more favorable than delocalized, free holes in the valence band in all materials but ZnO and SiO2. Based on calculated optical absorption and emission energies we show that STHs provide an explanation for the luminescence peaks that have been observed in many of these oxides. We demonstrate that polaron formation prohibits p-type conductivity in this class of materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据