4.6 Article

Triplet dynamics in fluorescent polymer light-emitting diodes

期刊

PHYSICAL REVIEW B
卷 85, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.045209

关键词

-

资金

  1. Engineering and Physical Sciences Research Council (UK) [EP/D0489X/1]

向作者/读者索取更多资源

We report a study of the triplet exciton dynamics and their effect on the performance of fluorescent organic light-emitting diodes. These polymer light-emitting diodes comprise metal oxide, injection electrodes, and poly(9,9'-dioctylfluorene-co-benzothiadiazole) as the emissive material and exhibit external quantum efficiencies up to 6.5%. Transient optical absorption measurements following a short (0.5 to 50 mu s) electrical drive pulse were used to monitor triplet dynamics during device operation. Triplet generation and decay processes were modeled, and we find that triplet-triplet annihilation is the dominant triplet decay mechanism. Singlet states, generated from triplet-triplet annihilation were monitored as delayed electroluminescence after the end of the drive pulse. From the delayed electroluminescence dynamics, we determine monomolecular as well as bimolecular triplet decay rates and estimate the triplet-charge annihilation rate. Singlet states generated from bimolecular triplet-triplet annihilation contribute up to 33% of the total amount of singlets generated in these fluorescent devices. To model these results, we require that triplet states can undergo bimolecular annihilation several times. With this model, we show that singlets can reach a maximum fraction of 40% of all excitons generated by charge recombination, without violating spin statistics. Singlet states generated from triplet-triplet annihilation are one important explanation for high external quantum efficiencies found in these fluorescent devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据