4.6 Article

Unidirectional ripples in strained graphene nanoribbons with clamped edges at zero and finite temperatures

期刊

PHYSICAL REVIEW B
卷 86, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.035427

关键词

-

资金

  1. Russian Foundation for Basic Research [11-08-97057-p-povolzhie-a]
  2. Ministry of Education, Singapore [RG 56/11]

向作者/读者索取更多资源

Molecular dynamics simulations based on many-body interatomic potentials are conducted to investigate the formation of unidirectional ripples in zigzag and armchair graphene nanoribbons with clamped edges under in-plane uniform strain. The ripple formation is found to be a result of buckling under in-plane membrane forces having compressive and tensile principle components. This study demonstrates that the amplitude and orientation of the unidirectional ripples can be controlled by a change in the components of the applied strain. The ripple wavelength is practically independent of the applied strain but increases with the increasing nanoribbon width. In the study of the temperature effect on strain-induced ripples it was found that with increase in temperature the degree of fluctuation of ripples increases. Ripples with larger formation energy are less affected by thermal fluctuations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据