4.6 Article

Singlet exciton diffusion length in organic light-emitting diodes

期刊

PHYSICAL REVIEW B
卷 85, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.245209

关键词

-

资金

  1. European Community [FP7-224122 (OLED100.eu)]

向作者/读者索取更多资源

We present a simple and accurate method to determine the singlet diffusion length in an operating organic light-emitting device (OLED). By using electrical rather than optical excitation, the method ensures that excitons are formed in a tightly confined generation zone, from which they can diffuse towards a quenching material. For a series of devices with varying distance between generation and quenching region, different emission intensities are found, and the experimentally obtained emission spectra of these devices can be used to determine the singlet diffusion length in the emissive layer of the device. By carefully choosing OLED layer materials and thicknesses, we can ensure well-defined quenching and blocking boundary conditions and exclude cavity effects as well as emission from the quenching material. An analytical model is developed to analyze the emission intensity found experimentally. We show that disregarding the fact that the generation zone has a nonzero width leads to an overestimation of the diffusion length. Furthermore, the current, i.e., the excitation density dependency of the singlet diffusion length, is investigated. At low current density (0.15 mA/cm(2)), a singlet diffusion length of 4.6 +/- 0.5 nm is obtained in N,N'-di-1-naphthalenyl-N,N'-diphenyl-[1,1':4',1 '':4 '',1'''-quaterphenyl]-4,4'''-diamine (4P-NPD). The singlet diffusion length decreases to 4.0 +/- 0.5 nm at 154.08 mA/cm(2).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据