4.6 Article

Scanning SQUID susceptometry of a paramagnetic superconductor

期刊

PHYSICAL REVIEW B
卷 85, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.224518

关键词

-

资金

  1. US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE-AC02-76SF00515]
  2. NSF [PHY-0425897]
  3. DARPA COMPASS grant

向作者/读者索取更多资源

Scanning SQUID susceptometry images the local magnetization and susceptibility of a sample. By accurately modeling the SQUID signal we can determine physical properties such as the penetration depth and permeability of superconducting samples. We calculate the scanning SQUID susceptometry signal for a superconducting slab of arbitrary thickness with isotropic London penetration depth lambda on a nonsuperconducting substrate, where both slab and substrate can have a paramagnetic response that is linear in the applied field. We derive analytical approximations to our general expression in a number of limits. Using our results, we fit experimental susceptibility data as a function of the sample-sensor spacing for three samples: (1) delta-doped SrTiO3, which has a predominantly diamagnetic response, (2) a thin film of LaNiO3, which has a predominantly paramagnetic response, and (3) the two-dimensional electron layer at a SrTiO3/LaAlO3 interface, which exhibits both types of response. These formulas will allow the determination of the concentrations of paramagnetic spins and superconducting carriers from fits to scanning SQUID susceptibility measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据