4.6 Article

Correlation effects on a topological insulator at finite temperatures

期刊

PHYSICAL REVIEW B
卷 85, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.125113

关键词

-

资金

  1. KAKENHI [21540359, 20102008, 21102510, 23540406, 19052003]
  2. MEXT of Japan
  3. JSPS
  4. Grants-in-Aid for Scientific Research [19052003, 23540406, 20102008] Funding Source: KAKEN

向作者/读者索取更多资源

We analyze the effects of the local Coulomb interaction on a topological band insulator (TBI) by applying the dynamical mean-field theory to a generalized Bernevig-Hughes-Zhang model having electron correlations. It is elucidated how the correlation effects modify electronic properties in the TBI phase at finite temperatures. In particular, the band inversion character of the TBI inevitably leads to the large reduction of the spectral gap via the renormalization effect, which results in the strong temperature dependence of the spin Hall conductivity. We clarify that a quantum phase transition from the TBI to a trivial Mott insulator, if it is nonmagnetic, is of first order with a hysteresis. This is confirmed via the interaction dependence of the double occupancy and the spectral function. A magnetic instability is also addressed. All these results imply that the spectral gap does not close at the transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据