4.6 Article

Scanning tunneling microscopy study of graphene on Au(111): Growth mechanisms and substrate interactions

期刊

PHYSICAL REVIEW B
卷 85, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.205406

关键词

-

资金

  1. Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, US Department of Energy [DE-AC04-94AL85000, DE-AC02-05CH11231]
  2. National Science Foundation

向作者/读者索取更多资源

We use scanning tunneling microscopy to study the structure of graphene islands on Au(111) grown by deposition of elemental carbon at 950 degrees C. Consistent with low-energy electron microscopic observations, we find that the graphene islands have dendritic shapes. The islands tend to cover depressed regions of the Au surface, suggesting that Au is displaced as the graphene grows. If small tunneling currents are used, it is possible to image simultaneously the graphene/Au moire and the Au herringbone reconstruction, which forms underneath the graphene on cooling from the growth temperature. The delicate herringbone structure and its periodicity remain unchanged from the bare Au surface. Using a Frenkel-Kontorova model, we deduce that this striking observation is consistent with an attraction between graphene and Au of less than 13 meV per C atom. Raman spectroscopy supports this weak interaction. However, at the tunneling currents necessary for atomic-resolution imaging of graphene, the Au reconstruction is altered, implying influential tip-sample interactions and a mobile Au surface beneath the graphene.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据