4.6 Article

Dynamics of superconducting nanowires shunted with an external resistor

期刊

PHYSICAL REVIEW B
卷 85, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.224507

关键词

-

资金

  1. US Department of Energy, Division of Materials Sciences [DE-FG02-07ER46453]
  2. US Department of Energy, Division of Materials Sciences through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign
  3. University of Cincinnati

向作者/读者索取更多资源

We present a study of superconducting nanowires shunted with an external resistor, geared towards understanding and controlling coherence and dissipation in nanowires. The dynamics is probed by measuring the evolution of the V-I characteristics and the distributions of switching and retrapping currents upon varying the shunt resistor and temperature. Theoretical analysis of the experiments indicates that as the value of the shunt resistance is decreased, the dynamics turns more coherent, presumably due to stabilization of phase-slip centers in the wire, and furthermore the switching current approaches the Bardeen's prediction for equilibrium depairing current. By a detailed comparison between theory and experiment, we make headway into identifying regimes in which the quasi-one-dimensional wire can effectively be described by a zero-dimensional circuit model analogous to the resistively and capacitively shunted Josephson junction model of Stewart and McCumber. Aside from its fundamental significance, our study has implications for a range of promising technological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据