4.6 Article

Phonon-limited mobility in n-type single-layer MoS2 from first principles

期刊

PHYSICAL REVIEW B
卷 85, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.115317

关键词

-

资金

  1. Center on Nanostructuring for Efficient Energy Conversion (CNEEC) at Stanford University, an Energy Frontier Research Center
  2. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001060]
  3. Lundbeck Foundation

向作者/读者索取更多资源

We study the phonon-limited mobility in intrinsic n-type single-layer MoS2 for temperatures T > 100 K. The materials properties including the electron-phonon interaction are calculated from first principles and the deformation potentials and Frohlich interaction in single-layer MoS2 are established. The calculated room-temperature mobility of similar to 410 cm(2)V(-1)s(-1) is found to be dominated by optical phonon scattering via intra and intervalley deformation potential couplings and the Frohlich interaction. The mobility is weakly dependent on the carrier density and follows a mu similar to T-gamma temperature dependence with gamma = 1.69 at room temperature. It is shown that a quenching of the characteristic homopolar mode, which is likely to occur in top-gated samples, increases the mobility with similar to 70 cm(2)V(-1)s(-1) and can be observed as a decrease in the exponent to. = 1.52. In comparison to recent experimental findings for the mobility in single-layer MoS2 (similar to 200 cm(2)V(-1)s(-1)), our results indicate that mobilities close to the intrinsic phonon-limited mobility can be achieved in two-dimensional materials via dielectric engineering that effectively screens static Coulomb scattering on, e.g., charged impurities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据