4.6 Article

Symmetry-protected fractional Chern insulators and fractional topological insulators

期刊

PHYSICAL REVIEW B
卷 85, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.165134

关键词

-

资金

  1. DOE [DE-FG02-99ER45747]
  2. Boston College

向作者/读者索取更多资源

In this paper we construct fully symmetric wave functions for the spin-polarized fractional Chern insulators (FCIs) and time-reversal-invariant fractional topological insulators (FTIs) in two dimensions using the parton approach. We show that the lattice symmetry gives rise to many different FCI and FTI phases even with the same filling fraction. (and the same quantized Hall conductance sigma(xy) in the FCI case). They have different symmetry-protected topological orders, which are characterized by different projective symmetry groups. We mainly focus on FCI phases which are realized in a partially filled band with Chern number 1. The low-energy gauge groups of a generic sigma(xy) = 1/m . e(2)/h FCI wave function can be either SU(m) or the discrete group Z(m), and in the latter case the associated low-energy physics are described by Chern-Simons-Higgs theories. We use our construction to compute the ground-state degeneracy. Examples of FCI/FTI wave functions on honeycomb lattice and checkerboard lattice are explicitly given. Possible non-Abelian FCI phases which may be realized in a partially filled band with Chern number 2 are discussed. Generic FTI wave functions in the absence of spin conservation are also presented whose low-energy gauge groups can be either SU(m) x SU(m) or Z(m) x Z(m). The constructed wave functions also set up the framework for future variational Monte Carlo simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据