4.6 Article

Efficient GW calculations for SnO2, ZnO, and rubrene: The effective-energy technique

期刊

PHYSICAL REVIEW B
卷 85, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.085126

关键词

-

资金

  1. Triangle de la Physique [2007-71]
  2. Saint-Gobain RD [091986]
  3. European Community [211956]
  4. ANR [NT09-610745]

向作者/读者索取更多资源

In a recent Rapid Communication [J. A. Berger, L. Reining, and F. Sottile, Phys. Rev. B 82, 041103(R) (2010)], we presented the effective-energy technique to evaluate, in an accurate and numerically efficient manner, electronic excitations by reformulating spectral sum-over-states expressions such that only occupied states appear. In our approach all the empty states are accounted for by a single effective energy that can be obtained from first principles. In this work we provide further details of the effective-energy technique, in particular, when combined with the GW method, in which a huge summation over empty states appears in the calculation of both the screened Coulomb interaction and the self-energy. We also give further evidence of the numerical accuracy of the effective-energy technique by applying it to the technological important materials SnO2 and ZnO. Finally, we use this technique to predict the band gap of bulk rubrene, an organic molecular crystal with a 140-atom unit cell.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据