4.6 Article

Convergence of many-body wave-function expansions using a plane-wave basis: From homogeneous electron gas to solid state systems

期刊

PHYSICAL REVIEW B
卷 86, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.035111

关键词

-

资金

  1. Distributed European Infrastructure for Supercomputing Applications under their Extreme Computing Initiative
  2. EPSRC
  3. Austrian Science Fund (F.W.F.) within the SFB ViCoM [F41]
  4. EPSRC [EP/J003867/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/J003867/1] Funding Source: researchfish

向作者/读者索取更多资源

Using the finite simulation-cell homogeneous electron gas (HEG) as a model, we investigate the convergence of the correlation energy to the complete-basis-set (CBS) limit in methods utilizing plane-wave wave-function expansions. Simple analytic and numerical results from second-order Moller-Plesset theory (MP2) suggest a 1/M decay of the basis-set incompleteness error where M is the number of plane waves used in the calculation, allowing for straightforward extrapolation to the CBS limit. As we shall show, the choice of basis-set truncation when constructing many-electron wave functions is far from obvious, and here we propose several alternatives based on the momentum transfer vector, which greatly improve the rate of convergence. This is demonstrated for a variety of wave-function methods, from MP2 to coupled-cluster doubles theory and the random-phase approximation plus second-order screened exchange. Finite basis-set energies are presented for these methods and compared with exact benchmarks. A transformation can map the orbitals of a general solid state system onto the HEG plane-wave basis and thereby allow application of these methods to more realistic physical problems. We demonstrate this explicitly for solid and molecular lithium hydride.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据