4.6 Article

Probing a topological quantum critical point in semiconductor-superconductor heterostructures

期刊

PHYSICAL REVIEW B
卷 85, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.155302

关键词

-

资金

  1. DARPA-MTO
  2. NSF
  3. DARPA-YFA
  4. DARPA-QuEST
  5. JQI-NSF-PFC
  6. Microsoft-Q
  7. Direct For Mathematical & Physical Scien
  8. Division Of Physics [1104527] Funding Source: National Science Foundation

向作者/读者索取更多资源

Quantum ground states on the nontrivial side of a topological quantum critical point (TQCP) have unique properties that make them attractive candidates for quantum information applications. A recent example is provided by s-wave superconductivity on a semiconductor platform, which is tuned through a TQCP to a topological superconducting (TS) state by an external Zeeman field. Despite many attractive features of TS states, TQCPs themselves do not break any symmetries, making it impossible to distinguish the TS state from a regular superconductor in conventional bulk measurements. Here we show that for the semiconductor TQCP this problem can be overcome by tracking suitable bulk transport properties across the topological quantum critical regime itself. The universal low-energy effective theory and the scaling form of the relevant susceptibilities also provide a useful theoretical framework in which to understand the topological transitions in semiconductor heterostructures. Based on our theory, specific bulk measurements are proposed here in order to characterize the novel TQCP in semiconductor heterostructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据