4.6 Article

Implications of the formation of small polarons in Li2O2 for Li-air batteries

期刊

PHYSICAL REVIEW B
卷 85, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.035210

关键词

-

资金

  1. National Renewable Energy Laboratory (NREL) [DE-AC36-08GO28308]
  2. NREL Computational Science Center [DE-AC36-08GO28308]
  3. National Energy Research Scientific Computing Center [DE-AC02-05CH11231]

向作者/读者索取更多资源

Lithium-air batteries (LABs) are an intriguing next-generation technology due to their high theoretical energy density of similar to 11 kWh/kg. However, LABs are hindered by both poor rate capability and significant polarization in cell voltage, primarily due to the formation of Li2O2 in the air cathode. Here, by employing hybrid density functional theory, we show that the formation of small polarons in Li2O2 limits electron transport. Consequently, the low electron mobility mu = 10(-10)-10(-9) cm(2)/Vs contributes to both the poor rate capability and the polarization that limit the LAB power and energy densities. The self-trapping of electrons in the small polarons arises from the molecular nature of the conduction band states of Li2O2 and the strong spin polarization of the O 2p state. Our understanding of the polaronic electron transport in Li2O2 suggests that designing alternative carrier conduction paths for the cathode reaction could significantly improve the performance of LABs at high current densities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据