4.6 Article

Resonant finite-size impurities in graphene, unitary limit, and Friedel oscillations

期刊

PHYSICAL REVIEW B
卷 86, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.115442

关键词

-

资金

  1. Department of Energy, Office of Basic Energy Sciences [DE-FG02-06ER46313]

向作者/读者索取更多资源

A unitary limit for model point scatterers in graphene is known to reveal low-energy resonances. The same limit could be achieved from hybridization of band electrons with the localized impurity level positioned in the vicinity of the Fermi level. The finite-size defects represent an easier realization of the effective unitary limit, occurring when the Fermi wavelength induced by the potential becomes of the order of the size of the defect. We calculate the induced electron density and find two signatures of a strong impurity, independent of its specific realization. The dependence of the impurity-induced electron density on the distance changes near resonances from proportional to r(-3) to proportional to r(-2). The total number of induced particles at the resonance is equal to one per degree of spin and valley degeneracy. The effects of doping on the induced density are found.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据