4.6 Article

Growth and electronic structure of nitrogen-doped graphene on Ni(111)

期刊

PHYSICAL REVIEW B
卷 86, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.075401

关键词

-

资金

  1. BMBF [05ES3XBA15]
  2. German Research Council (DFG)
  3. Alexander von Humboldt Foundation
  4. China Scholarship Council

向作者/读者索取更多资源

We report on experimental and theoretical investigations of nitrogen-doped graphene. The incorporation of nitrogen was achieved during chemical-vapor deposition on Ni(111) using pyridine as a precursor. The obtained graphene layers were investigated using photoelectron spectroscopy. By studying C 1s and N 1s core levels, we show that the nitrogen content is influenced by the growth temperature and determine the atomic arrangement of the nitrogen atoms. Valence-band photoelectron spectra show that the incorporation of nitrogen leads to a broadening of the photoemission lines and a shift of the p band. Density functional calculations for two possible geometric arrangements, the substitution of carbon atoms by nitrogen and vacancies in the graphene sheet with pyridinic nitrogen at the edges, reveal that the two arrangements have opposite effects on the band structure. For the present experimental approach, vacancies with pyridinic nitrogen are dominant. In the latter case the vacancies generated by the nitrogen doping, not the nitrogen itself, have the main effect on the band structure. By intercalating gold between the doped graphene layer and the Ni(111) substrate electronic decoupling is achieved. After intercalation the doping remains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据