4.6 Article

Effect of hydrogen passivation on the electronic structure of ionic semiconductor nanostructures

期刊

PHYSICAL REVIEW B
卷 85, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.195328

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [G2009CB929300]
  2. National Natural Science Foundation of China [61121491, 11104264]
  3. US Department of Energy [DE-AC36-08GO28308]

向作者/读者索取更多资源

In theoretical studies of thin film and nanostructured semiconductors, pseudohydrogen (PH) is widely used to passivate the surface dangling bonds. Based on these calculations, it is often believed that nanostructured semiconductors, due to quantum confinement, have a larger band gap than their bulk counterparts. Using first-principles band structure theory calculation and comparing systematically the differences between PH-passivated and real-hydrogen-passivated (RH-passivated) semiconductor surfaces and nanocrystals, we show that, unlike PH passivation that always increases the band gap with respect to the bulk value, RH passivation of the nanostructured semiconductors can either increase or decrease the band gap, depending on the ionicity of the nanocompounds. The differences between PH and RH passivations decreases when the covalency of the semiconductor increases and can be explained using a band coupling model. This observation greatly increases the tunability of nanostructured semiconductor properties, especially for wide-gap ionic semiconductors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据