4.6 Article

Optimizing large parameter sets in variational quantum Monte Carlo

期刊

PHYSICAL REVIEW B
卷 85, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.85.045103

关键词

-

资金

  1. NSF [CHE-1004603, DMR-0908653]
  2. Miller Institute for Basic Research in Science
  3. Direct For Mathematical & Physical Scien
  4. Division Of Materials Research [0908653] Funding Source: National Science Foundation
  5. Division Of Chemistry
  6. Direct For Mathematical & Physical Scien [1004603] Funding Source: National Science Foundation

向作者/读者索取更多资源

We present a technique for optimizing hundreds of thousands of variational parameters in variational quantum Monte Carlo. By introducing iterative Krylov subspace solvers and by multiplying by the Hamiltonian and overlap matrices as they are sampled, we remove the need to construct and store these matrices and thus bypass the most expensive steps of the stochastic reconfiguration and linear method optimization techniques. We demonstrate the effectiveness of this approach by using stochastic reconfiguration to optimize a correlator product state wave function with a Pfaffian reference for four example systems. In two examples on the two dimensional Fermionic Hubbard model, we study 16 and 64 site lattices, recovering energies accurate to 1% in the smaller lattice and predicting particle-hole phase separation in the larger. In two examples involving an ab initio Hamiltonian, we investigate the potential energy curve of a symmetrically dissociated 4 x 4 hydrogen lattice as well as the singlet-triplet gap in free base porphin. In the hydrogen system we recover 98% or more of the correlation energy at all geometries, while for porphin we compute the gap in a 24 orbital active space to within 0.02 eV of the exact result. The number of variational parameters in these examples ranges from 4 x 10(3) to 5 x 10(5).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据