4.6 Article

Non-Abelian SU(2) gauge fields through density wave order and strain in graphene

期刊

PHYSICAL REVIEW B
卷 86, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.081403

关键词

-

资金

  1. DOE [DE-FG02-07ER46453]
  2. ICMT at UIUC

向作者/读者索取更多资源

Spatially varying strain patterns can qualitatively alter the electronic properties of graphene, acting as effective valley-dependent magnetic fields and giving rise to pseudo-Landau-level (PLL) quantization. Here, we show that the strain-induced magnetic field is one component of a non-Abelian SU(2) gauge field within the low-energy theory of graphene and identify the other two components as period-3 charge-density waves. We show that these density waves, if spatially varied, give rise to PLL quantization. We also argue that strain-induced magnetic fields can induce density-wave order in graphene, thus dynamically gapping out the lowest PLL; moreover, the ordering should generically be accompanied by dislocations. We discuss experimental signatures of these effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据