4.6 Article

Electric field dependence of charge carrier hopping transport within the random energy landscape in an organic field effect transistor

期刊

PHYSICAL REVIEW B
卷 86, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.86.045207

关键词

-

资金

  1. Austrian Science Foundation [S9706, S9711]
  2. Science & Technology Center in Ukraine [5258]
  3. OAD Project [UA 10/2011]
  4. European Commission [FP7-247978, FP7-212311]
  5. [M/283-2011]
  6. [1/10-H-23K]

向作者/读者索取更多资源

We extended our analytical effective medium theory [Phys. Rev. B 81, 045202 (2010)] to describe the temperature-dependent hopping charge carrier mobility at arbitrary electric fields in the large carrier density regime. Special emphasis was made to analyze the influence of the lateral electric field on the Meyer-Neldel (MN) phenomenon observed when studying the charge mobilities in thin-film organic field-effect transistors (OFET). Our calculations are based on the average hopping transition time approach, generalized for large carrier concentration limit finite fields, and taking into account also spatial energy correlations. The calculated electric field dependences of the hopping mobility at large carrier concentrations are in good agreement with previous computer simulations data. The shift of the MN temperature in an OFET upon applied electric field is shown to be a consequence of the spatial energy correlation in the organic semiconductor film. Our calculations show that the phenomenological Gill equation is clearly inappropriate for describing conventional charge carrier transport at low carrier concentrations. On the other hand a Gill-type behavior has been observed in a temperature range relevant for measurements of the charge carrier mobility in OFET structures. Since the present model is not limited to zero-field mobility, it allows a more accurate evaluation of important material parameters from experimental data measured at a given electric field. In particular, we showed that both the MN and Gill temperature can be used for estimating the width of the density of states distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据