4.6 Article

Lattice thermal conductivity reduction in Bi2Te3 quantum wires with smooth and rough surfaces: A molecular dynamics study

期刊

PHYSICAL REVIEW B
卷 83, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.035312

关键词

-

资金

  1. Purdue University
  2. School of Mechanical Engineering, Purdue University

向作者/读者索取更多资源

Using molecular dynamics simulations, we have predicted the thermal conductivity of Bi2Te3 nanowires with diameters ranging from 3 to 30 nm with both smooth and rough surfaces. It is found that when the nanowire diameter decreases to the molecular scale (below 10 nm, or the so-called quantum wire), the thermal conductivity shows significant reduction as compared to bulk value. On the other hand, the thermal conductivity for the 30-nm-diam nanowire only shows less than 20% reduction, in agreement with recent experimental data. Also, the thermal conductivity of nanowires shows a weaker temperature dependence than the typical T-1 trend, consistent with experimental observations. This is attributed to the strong boundary scattering of phonons. An analytical model is developed to interpret the molecular dynamics data, and the model suggests that phonon softening in thin nanowires and strong phonon scattering on the rough surface are the two major mechanisms leading to the thermal conductivity reduction. Our results indicate that Bi2Te3 nanowires need to be in the molecular scale (diameter below 10 nm) in order to achieve better ZT than the bulk phase.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据