4.6 Article

Dispersive magnetometry with a quantum limited SQUID parametric amplifier

期刊

PHYSICAL REVIEW B
卷 83, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.134501

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy [DE-AC02-05CH11231]
  2. Office of Naval Research [N00014-07-1-0774]
  3. AFOSR [FA9550-08-1-0104]
  4. Hertz Foundation

向作者/读者索取更多资源

There is currently fundamental and technological interest in measuring and manipulating nanoscale magnets, particularly in the quantum coherent regime. To observe the dynamics of such systems one requires a magnetometer with not only exceptional sensitivity but also high gain, wide bandwidth, and low backaction. We demonstrate a dispersive magnetometer consisting of a two-junction superconducting quantum interference device (SQUID) in parallel with an integrated, lumped-element capacitor. Input flux signals are encoded as a phase modulation of the microwave drive tone applied to the magnetometer, resulting in a single quadrature voltage signal. For strong drive power, the nonlinearity of the resonator results in quantum limited, phase sensitive parametric amplification of this signal, which improves flux sensitivity at the expense of bandwidth. Depending on the drive parameters, the device performance ranges from an effective flux noise of 0.29 mu Phi(0)Hz(-1/2) and 20 MHz of signal bandwidth to a noise of 0.14 mu Phi(0)Hz(-1/2) and a bandwidth of 0.6 MHz. These results are in excellent agreement with our theoretical model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据