4.6 Article

Drude weight, plasmon dispersion, and ac conductivity in doped graphene sheets

期刊

PHYSICAL REVIEW B
卷 84, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.045429

关键词

-

资金

  1. NSF [0705460]
  2. Welch Foundation [F-1473]
  3. SWAN
  4. IPM in Tehran, Iran
  5. Division Of Materials Research
  6. Direct For Mathematical & Physical Scien [0705460, 1104788] Funding Source: National Science Foundation

向作者/读者索取更多资源

We demonstrate that the plasmon frequency and Drude weight of the electron liquid in a doped graphene sheet are strongly renormalized by electron-electron interactions even in the long-wavelength limit. This effect is not captured by the random-phase approximation (RPA), commonly used to describe electron fluids, and is due to coupling between the center-of-mass motion and the pseudospin degree of freedom of the graphene's massless Dirac fermions. By making use of diagrammatic perturbation theory to first order in the electron-electron interaction, we show that this coupling enhances both the plasmon frequency and the Drude weight relative to the RPA value. We also show that interactions are responsible for a significant enhancement of the optical conductivity at frequencies just above the absorption threshold. Our predictions can be checked by far-infrared spectroscopy or inelastic light scattering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据