4.6 Article

Submonolayer growth of CuPc on noble metal surfaces

期刊

PHYSICAL REVIEW B
卷 83, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.085416

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [KU 1531/2-1, Graduiertenkolleg GK 1221]
  2. Bundesministerium fur Bildung und Forschung (BMBF) [03SF0356B GREKOS]

向作者/读者索取更多资源

The understanding of growth mechanisms and electronic properties is a key issue for improving the performance of small organic devices, in which the metal-organic interface and its properties play a crucial role. In this context we investigated the adsorption behavior and the electronic properties of copper-II-phthalocyanine (CuPc) within the first adsorbate layer on Au(111) and Cu(111). Together with recent results published for CuPc/Ag(111) [Kroger et al., New J. Phys. 12, 083038 (2010)] this leads to a comprehensive understanding of the adsorption of CuPc on noble metal surfaces: On Cu(111) the molecule-surface interaction is the strongest. The molecules chemisorb on the surface and form one-dimensional chains or two-dimensional islands, depending on coverage. This behavior indicates an attractive intermolecular interaction. In contrast, on Au(111) CuPc is only weakly physisorbed and behaves like a two-dimensional gas in a wide coverage regime. Only when densely packed do the molecules form ordered structures, which are scarcely influenced by the structure of the metallic surface. Molecule-molecule interaction is also very weak, but in contrast to CuPc on Ag(111) no clear indications for a repulsive interaction are found. Regarding the adsorption strength, this latter system represents an (possibly unique) intermediate case which enables the unusual intermolecular repulsion found recently. Our results highlight the special role of this model system, since the interaction of CuPc with the metal can be tuned in any order of the adsorption scenarios observed by selecting the right substrate material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据