4.6 Article

Grain boundary loops in graphene

期刊

PHYSICAL REVIEW B
卷 83, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.195425

关键词

-

资金

  1. Semiconductor Research Corporation (NRI-INDEX)
  2. NSF [DMR-0804908, DMR-0820382 [MRSEC]]

向作者/读者索取更多资源

Topological defects can affect the physical properties of graphene in unexpected ways. Harnessing their influence may lead to enhanced control of both material strength and electrical properties. Here we present a class of topological defects in graphene composed of a rotating sequence of dislocations that close on themselves, forming grain boundary loops that either conserve the number of atoms in the hexagonal lattice or accommodate vacancy or interstitial reconstruction, while leaving no unsatisfied bonds. One grain boundary loop is observed as a flower pattern in scanning tunneling microscopy studies of epitaxial graphene grown on SiC(0001). We show that the flower defect has the lowest energy per dislocation core of any known topological defect in graphene, providing a natural explanation for its growth via the coalescence of mobile dislocations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据