4.6 Article

Scattering mechanisms in a high-mobility low-density carbon-doped (100) GaAs two-dimensional hole system

期刊

PHYSICAL REVIEW B
卷 83, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.241305

关键词

-

资金

  1. Sandia Laboratories/Purdue University Excellence in Science and Engineering
  2. Miller Family Foundation
  3. Microsoft Station Q
  4. NSF [DMR-0907172]

向作者/读者索取更多资源

We report on a systematic study of the density dependence of mobility in a low-density carbon-doped (100) GaAs two-dimensional hole system (2DHS). At T = 50 mK, a mobility of 2.6 x 10(6) cm(2)/Vs at a density p = 6.2 x 10(10)cm(-2) was measured. This is the highest mobility reported for a 2DHS to date. Using a backgated sample geometry, the density dependence of mobility was studied from 2.8 x 10(10) cm(-2) to 1 x 10(11) cm(-2). The mobility vs density cannot be fit to a power law dependence of the form alpha similar to p(alpha) using a single exponent alpha. Our data indicate a continuous evolution of the power law with alpha ranging from similar to 0.7 at high density and increasing to similar to 1.7 at the lowest densities measured. Calculations specific to our structure indicate a crossover of the dominant scattering mechanism from uniform background impurity scattering at high density to remote ionized impurity scattering at low densities. This is the first observation of a carrier density-induced transition from background impurity dominated to remote dopant dominated transport in a single sample.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据