4.6 Article

Current-induced rotational torques in the skyrmion lattice phase of chiral magnets

期刊

PHYSICAL REVIEW B
卷 84, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.064401

关键词

-

资金

  1. DFG [SFB 608]
  2. Deutsche Telekom Stiftung
  3. Bonn-Cologne graduate school (BCGS)
  4. FOM
  5. NWO
  6. ERC

向作者/读者索取更多资源

In chiral magnets without inversion symmetry, the magnetic structure can form a lattice of magnetic whirl lines, a two-dimensional skyrmion lattice, stabilized by spin-orbit interactions in a small range of temperatures and magnetic fields. The twist of the magnetization within this phase gives rise to an efficient coupling of macroscopic magnetic domains to spin currents. We analyze the resulting spin-transfer effects, and, in particular, focus on the current-induced rotation of the magnetic texture by an angle. Such a rotation can arise from macroscopic temperature gradients in the system as has recently been shown experimentally and theoretically. Here we investigate an alternative mechanism, where small distortions of the skyrmion lattice and the transfer of angular momentum to the underlying atomic lattice play the key role. We employ the Landau-Lifshitz-Gilbert equation and adapt the Thiele method to derive an effective equation of motion for the rotational degree of freedom. We discuss the dependence of the rotation angle on the orientation of the applied magnetic field and the distance to the phase transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据