4.6 Article

Predicting the spin-lattice order of frustrated systems from first principles

期刊

PHYSICAL REVIEW B
卷 84, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.224429

关键词

-

资金

  1. NSFC [11104038]
  2. Pujiang plan
  3. Program for Professor of Special Appointment (Eastern Scholar)
  4. US DOE [DE-AC36-08GO28308]
  5. NCSU US DOE [DE-FG02-86ER45259]

向作者/读者索取更多资源

A novel general method of describing the spin-lattice interactions in magnetic solids is proposed in terms of first-principles calculations. The spin exchange and Dzyaloshinskii-Moriya interactions, as well as their derivatives with respect to atomic displacements, can be evaluated efficiently on the basis of density-functional calculations for four ordered spin states. By taking into consideration the spin-spin interactions, the phonons, and the coupling between them, we show that the ground-state structure of a representative spin-frustrated spinel, MgCr2O4, is tetragonally distorted, in agreement with experiments. However, our calculations find the lowest energy for the collinear spin ground state, in contrast to previously suggested noncollinear models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据