4.6 Article

Relationship between hardness and dislocation processes in a nanocrystalline metal at the atomic scale

期刊

PHYSICAL REVIEW B
卷 83, 期 22, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.224101

关键词

-

资金

  1. NSF [DMR-0747658]
  2. Vermont Experimental Program to Stimulate Competitive Research [NSF EPS-0236976]
  3. Vermont Advanced Computing Center [NASA NNX06AC88G]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Materials Research [0747658] Funding Source: National Science Foundation

向作者/读者索取更多资源

By combining atomic force microscopy (AFM) and large-scale molecular dynamics (MD) simulations, we examine at comparable scales the atomistic processes governing nanohardness in electrodeposited nanocrystalline Ni with a mean grain diameter of 18.6 nm under confined contact deformation. Notably, this mean grain diameter represents the strongest size for Ni and other nanocrystalline materials where both crystal slip and grain-boundary deformation processes are intertwined to accommodate plastic flow. Accurate hardness measurements were obtained from shallow nanoindentations, less than 10 nm in depth, using an AFM diamond tip. We show evidence that the controlling yielding mechanism in the peak of hardness as a function of penetration depth corresponds to the emission of partial dislocations from grain boundaries. However, MD simulations also reveal for this grain size that the crystalline interfaces must undergo significant sliding at small penetration depths in order to initiate crystal slip. The strong interplay between intergranular and intragranular deformation processes found in this model nanocrystalline metal is discussed and shown to considerably reduce the local dependence of nanohardness on the initial microstructure at this scale, unlike past observations of nanoindentation in Ni electrodeposits with larger grain sizes. These new findings therefore constitute an important step forward to understanding the contribution of nanoscale grain-boundary networks on permanent deformation and hardness relevant for nanoscale materials and structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据