4.6 Article

Thermodynamic, thermoelectric, and magnetic properties of FeSb2: A combined first-principles and experimental study

期刊

PHYSICAL REVIEW B
卷 84, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.125210

关键词

-

资金

  1. ARC [10/15-03]
  2. French Community of Belgium
  3. Helmholtz-University Young Investigator Group Lattices Dynamics in Emerging Functional Materials

向作者/读者索取更多资源

We analyze the thermodynamic, magnetic, and transport properties of the narrow band-gap semiconductor FeSb2 using density functional theory calculations corroborated by nuclear inelastic spectroscopy and ultrasound experiments. The vibrational properties (phonon spectrum, density of states, heat capacity) and elastic constants are computed through response function calculations and are in good agreements with the measurements. The electron-phonon coupling effects are also studied. The estimations of linewidth broadening due to electron-phonon coupling along the high-symmetry directions in the first Brillouin zone are given. The linewidth broadening reaches the largest value for Fe optical modes in the vicinity of the X[0.5,0,0] point. The broadening, when compared to those obtained at the other symmetry points, differs by up to two orders of magnitude. From the Boltzmann theory applied to our electronic band structure, we investigate the electrical transport properties. It is found that a purely electronic structure description is incompatible with the record value of the Seebeck coefficient experimentally observed at T approximate to 12 K. The diamagnetic to paramagnetic crossover at a temperature around 100 K is also described from the calculation of the magnetic susceptibility, and results compare well with experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据