4.6 Article

Graphene-based biosensor using transport properties

期刊

PHYSICAL REVIEW B
卷 83, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.045401

关键词

-

资金

  1. Royal Society
  2. Leverhulme Trust

向作者/读者索取更多资源

The potential of graphene nanoribbons (GNR's) as molecular-scale sensors is investigated by calculating the electronic properties of the ribbon and the organic molecule ensemble. The organic molecule is assumed to be absorbed at the edge of a zigzag GNR. These nanostructures are described using a single-band tight-binding Hamiltonian. Their transport spectrum and density of states are calculated using the nonequilibrium Green's function formalism. The results show a significant suppression of the density of states (DOS), with a distinct response for the molecule. This may be promising for the prospect of GNR-based single-molecule sensors that might depend on the DOS (e. g., devices that respond to changes in either conductance or electroluminescence). Further, we have investigated the effect of doping on the transport properties of the system. The substitutional boron and nitrogen atoms are located at the center and edge of GNR's. These dopant elements have significant influence on the transport characteristics of the system, particularly doping at the GNR edge.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据