4.6 Article

Classification of gapped symmetric phases in one-dimensional spin systems

期刊

PHYSICAL REVIEW B
卷 83, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.035107

关键词

-

资金

  1. NSF [DMR-1005541, NSFPHY05-51164]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [1005541] Funding Source: National Science Foundation

向作者/读者索取更多资源

Quantum many-body systems divide into a variety of phases with very different physical properties. The questions of what kinds of phases exist and how to identify them seem hard, especially for strongly interacting systems. Here we make an attempt to answer these questions for gapped interacting quantum spin systems whose ground states are short-range correlated. Based on the local unitary equivalence relation between short-range-correlated states in the same phase, we classify possible quantum phases for one-dimensional (1D) matrix product states, which represent well the class of 1D gapped ground states. We find that in the absence of any symmetry all states are equivalent to trivial product states, which means that there is no topological order in 1D. However, if a certain symmetry is required, many phases exist with different symmetry-protected topological orders. The symmetric local unitary equivalence relation also allows us to obtain some simple results for quantum phases in higher dimensions when some symmetries are present.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据