4.6 Article

Using design principles to systematically plan the synthesis of hole-conducting transparent oxides: Cu3VO4 and Ag3VO4 as a case study

期刊

PHYSICAL REVIEW B
卷 84, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.165116

关键词

-

资金

  1. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC36-08GO28308]
  2. Office of Science of the US Department of Energy

向作者/读者索取更多资源

In order to address the growing need for p-type transparent conducting oxides (TCOs), we present a materials design approach that allows to search for materials with desired properties. We put forward a set of design principles (DPs) that a material must meet in order to qualify as a p-type TCO. We then start from two prototype p-type binary oxides, i.e., Cu2O and Ag2O, and define a large group of compounds in which to search for unique candidate materials. From this set of compounds, we extracted two oxovanadates, Cu3VO4 and Ag3VO4, which serve as a case study to show the application of the proposed materials selection procedure driven by the DPs. Polycrystalline Ag3VO4 was synthesized by a water-based hydrothermal technique, whereas Cu3VO4 was prepared by a solid-state reaction. The theoretical study of the thermochemistry, based on first-principles electronic structure methods, demonstrates that Cu3VO4 and alpha-Ag3VO4 are p-type materials that show intrinsic hole-producing defects along with a low concentration of hole-killing defects. Owing to its near-perfect stoichiometry, Ag3VO4 has a rather low hole concentration, which coincides with the experimentally determined conductivity limit of 0.002 S/cm. In contrast, Cu3VO4 is highly off stoichiometric, Cu3-xVO4 (x = 0.15), which raises the amount of holes, but due to its black color, it does not fulfill the requirements for a p-type TCO. The onset of optical absorption in alpha-Ag3VO4 is calculated to be 2.6 eV, compared to the experimentally determined value of 2.1 eV, which brings it to the verge of transparency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据