4.6 Article

Electron-phonon interactions in bilayer graphene

期刊

PHYSICAL REVIEW B
卷 83, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.161402

关键词

-

资金

  1. DARPA/HRL CERA
  2. ARL
  3. SRC/FCRP FENA
  4. Office of Basic Energy Sciences, US DOE at Oak Ridge National Lab [DE-AC05-00OR22725]
  5. UT-Battelle, LLC.
  6. NSF

向作者/读者索取更多资源

Using calculations from first principles, we demonstrate that intrinsic carrier-phonon scattering in bilayer graphene is dominated by low-energy acoustic (and acousticlike) phonon modes in a framework that bears more resemblance to bulk graphite than to monolayer graphene. The total scattering rate at low to moderate electron energies can be described by a simple two-phonon model in the deformation potential approximation with effective constants D-ac approximate to 15 eV and D-op approximate to 2.8 x 10(8) eV/cm for acoustic and optical phonons, respectively. With much enhanced acoustic phonon scattering, the mobility of intrinsic bilayer graphene is estimated to be significantly smaller than that of the monolayer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据