4.6 Article

First-principles study on the interaction of H interstitials with grain boundaries in α- and γ-Fe

期刊

PHYSICAL REVIEW B
卷 84, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.144121

关键词

-

资金

  1. ThyssenKrupp AG
  2. Bayer MaterialScience AG
  3. Salzgitter Mannesmann Forschung GmbH
  4. Robert Bosch GmbH
  5. Benteler Stahl/Rohr GmbH
  6. Bayer Technology Services GmbH
  7. state of North-Rhine Westphalia
  8. EU

向作者/读者索取更多资源

The presence of hydrogen may weaken the bonding of iron atoms at grain boundaries, leading to intergranular embrittlement and thus failure of the bulk material. In this paper, we study the interaction of hydrogen interstitials with close-packed and open grain boundary structures in alpha-and gamma-Fe using density-functional theory. We find that hydrogen accommodation within the grain boundaries strongly depends on the local coordination of the available interstitial sites. Within the open grain boundary structures larger interstitial sites are available, enhancing the solubility as compared to that in the respective bulk phases. The mobility of hydrogen within the investigated grain boundaries is low compared to diffusion in perfect single-crystalline bulk. The grain boundaries do not provide fast diffusion channels for hydrogen, but act as hydrogen traps. Hydrogen that is accumulated within the grain boundaries can lead to a lowering of the critical strain required to fracture the material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据