4.6 Article

Quantum quenches in the Hubbard model: Time-dependent mean-field theory and the role of quantum fluctuations

期刊

PHYSICAL REVIEW B
卷 83, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.165105

关键词

-

资金

  1. Italian Ministry of University and Research

向作者/读者索取更多资源

We study the nonequilibrium dynamics in the fermionic Hubbard model after a sudden change of the interaction strength. To this scope, we introduce a time-dependent variational approach in the spirit of the Gutzwiller ansatz. At the saddle-point approximation, we find at half filling a sharp transition between two different regimes of small and large coherent oscillations, separated by a critical line of quenches where the system is found to relax. Any finite doping washes out the transition, leaving aside just a sharp crossover. In order to investigate the role of quantum fluctuations, we map the model onto an auxiliary quantum Ising model in a transverse field coupled to free fermionic quasiparticles. Remarkably, the Gutzwiller approximation turns out to correspond to the mean-field decoupling of this model in the limit of infinite coordination lattices. The advantage is that we can go beyond mean field and include Gaussian fluctuations around the non-equilibrium mean-field dynamics. Unlike at equilibrium, we find that quantum fluctuations become massless and eventually unstable before the mean-field dynamical critical line, which suggests they could even alter qualitatively the mean-field scenario.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据