4.6 Article

Mapping the energy surface of PbTiO3 in multidimensional electric-displacement space

期刊

PHYSICAL REVIEW B
卷 84, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.115107

关键词

-

资金

  1. ONR [N00014-05-1-0054]

向作者/读者索取更多资源

In recent years, methods have been developed that allow first-principles electronic-structure calculations to be carried out under conditions of fixed electric field. For some purposes, however, it is more convenient to work at fixed electric displacement field. Initial implementations of the fixed-displacement-field approach have been limited to constraining the field along one spatial dimension only. Here, we generalize this approach to treat the full three-dimensional displacement field as a constraint and compute the internal-energy landscape as a function of this multidimensional displacement-field vector. Using PbTiO3 as a prototypical system, we identify stable or metastable tetragonal, orthorhombic, and rhombohedral structures as the displacement field evolves along the [001], [110], and [111] directions, respectively. The energy minimum along [001] is found to be deeper than that along [110] or [111], as expected for a system having a tetragonal ground state. The barriers connecting these minima are found to be quite small, consistent with the current understanding that the large piezoelectric effects in PbTiO3 arise from the easy rotation of the polarization vector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据