4.6 Article

Strain-induced darkening of trapped excitons in coupled quantum wells at low temperature

期刊

PHYSICAL REVIEW B
卷 83, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.245304

关键词

-

资金

  1. US Department of Energy [DE-FG02-99ER457080]
  2. EPSRC [EP/H032258/1, EP/G004714/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/H032258/1, EP/G004714/1] Funding Source: researchfish

向作者/读者索取更多资源

In GaAs/AlGaAs coupled quantum wells, strain-induced traps may be used to confine excitons in in-plane, harmonic traps. Using these traps, we have pursued Bose-Einstein condensation (BEC) of long-lived, spatially indirect excitons. Here, we report a remarkable transition of the indirect exciton luminescence pattern with increasing strain, increasing exciton density, and decreasing temperature, to a spatial pattern exhibiting a large dark spot at the trap center, where we expect the exciton density to be maximum. The mechanism of particle loss is ruled out as an explanation for this dark spot. While the onset criteria are approximately consistent with the conditions for BEC of a weakly interacting gas, the conspicuous proximity in energy of the indirect light-hole states suggests that an explanation employing the single-particle physics of light-hole-heavy-hole mixing may explain the phenomenon. The effect of the strain is modeled, and the resulting landscape of indirect exciton spin states is discussed. The relative oscillator strengths of these states are predicted by an exact numerical solution of the two-particle Schrodinger equation for electrons and holes in coupled quantum wells and an electric field. The contrast in oscillator strengths is sufficient to produce this luminescence pattern, but this analysis suggests a strongly diminished lifetime as stress is increased. The opposite lifetime dependence is observed experimentally. Additionally, the temperature dependence eludes explanation by this mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据