4.6 Article

Energetics and electronic structure of graphene adsorbed on HfO2(111): Density functional theory calculations

期刊

PHYSICAL REVIEW B
卷 83, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.153413

关键词

-

资金

  1. CREST [22740259]
  2. Japan Science and Technology Agency
  3. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  4. Grants-in-Aid for Scientific Research [22740259] Funding Source: KAKEN

向作者/读者索取更多资源

We report total-energy electronic-structure calculations based on density functional theory performed on graphene adsorbed on the (111) surface of hafnium dioxide (HfO2). We find that the graphene is bound to the HfO2 surface with an interlayer spacing of 3.05 angstrom with a binding energy of about -110 meV per C atom. The electronic structure of the HfO2-adsorbed graphene originates primarily from that of the graphene near the Fermi level. However, a detailed analysis of the electronic structure shows that the linear bands on the Dirac cone are slightly split because of the interaction between the graphene and the HfO2 substrate. The physical origin of this splitting is the hybridization between the p states of the graphene and the O 2p state with Hf d character.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据