4.6 Article

Compressibility of graphene

期刊

PHYSICAL REVIEW B
卷 83, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.085429

关键词

-

资金

  1. US-ONR
  2. NRI-SWAN

向作者/读者索取更多资源

We develop a theory for the compressibility and quantum capacitance of disordered monolayer and bilayer graphene, including the full hyperbolic band structure and band gap in the latter case. We include the effects of disorder in our theory, which are of particular importance at the carrier densities near the Dirac point. We account for this disorder statistically using two different averaging procedures: first via averaging over the density of carriers directly, and then via averaging in the density of states to produce an effective density of carriers. We also compare the results of these two models with experimental data, and to do this we introduce a model for interlayer screening which predicts the size of the band gap between the low-energy conduction and valence bands for arbitrary gate potentials applied to both layers of bilayer graphene. We find that both models for disorder give qualitatively correct results for gapless systems, but when there is a band gap in the low-energy band structure, the density of states averaging is incorrect and disagrees with the experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据