4.6 Article

Onset of nondiffusive phonon transport in transient thermal grating decay

期刊

PHYSICAL REVIEW B
卷 84, 期 19, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.195206

关键词

-

资金

  1. S3TEC Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001299]

向作者/读者索取更多资源

The relaxation of a spatially sinusoidal temperature perturbation in a dielectric crystal at a temperature comparable to or higher than the Debye temperature is investigated theoretically. We assume that most phonons contributing to the specific heat have a mean free path (MFP) much shorter than the thermal transport distance and can be described by the thermal diffusion model. Low-frequency phonons that may have MFP comparable to or longer than the grating period are described by the Boltzmann transport equation. These low-frequency phonons are assumed to interact with the thermal reservoir of high-frequency phonons but not with each other. Within the single mode relaxation time approximation, an analytical expression for the thermal grating relaxation rate is obtained. We show that the contribution of ballistic phonons with long MFP to the effective thermal conductivity governing the grating decay is suppressed compared to their contribution to thermal transport at long distances. The reduction in the effective thermal conductivity in Si at room temperature is found to be significant at grating periods as large as 10 mu m.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据