4.6 Article

Bose-glass, superfluid, and rung-Mott phases of hard-core bosons in disordered two-leg ladders

期刊

PHYSICAL REVIEW B
卷 83, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.245101

关键词

-

资金

  1. National Science Foundation [NSF PHY05-51164]

向作者/读者索取更多资源

By means of Monte Carlo techniques, we study the role of disorder on a system of hard-core bosons in a two-leg ladder with both intrachain (t) and interchain (t') hoppings. We find that the phase diagram as a function of the boson density, disorder strength, and t'/t is far from being trivial. This contrasts with the case of spinless fermions where standard localization arguments apply and an Anderson-localized phase pervades the whole phase diagram. A compressible Bose-glass phase always intrudes between the Mott insulator with zero (or one) bosons per site and the superfluid that is stabilized for weak disorder. At half-filling, there is a direct transition between a (gapped) rung-Mott insulator and a Bose glass, which is driven by exponentially rare regions where disorder is suppressed. Finally, by doping the rung-Mott insulator, a direct transition to the superfluid is possible only in the clean system, whereas the Mott phase is always surrounded by the a Bose glass when disorder is present. The phase diagram based on our numerical evidence is finally reported.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据