4.6 Article

Quantized Auger recombination of biexcitons in CdSe nanorods studied by time-resolved photoluminescence and transient-absorption spectroscopy

期刊

PHYSICAL REVIEW B
卷 83, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.155324

关键词

-

资金

  1. MEXT [20104006]
  2. Kyoto University
  3. JSPS [22-55312]
  4. Grants-in-Aid for Scientific Research [20104006] Funding Source: KAKEN

向作者/读者索取更多资源

We studied the recombination dynamics of biexcitons in elongated CdSe nanocrystals (nanorods) using time-resolved photoluminescence (PL) and transient absorption (TA) spectroscopy. The decay times of the PL and TA signals decrease with increasing nanorod length. Under weak excitation, the PL decay is faster than the TA decay, and the nonradiative hole trapping determines the PL decay in several hundreds of picoseconds. Under intense excitation, the PL decay curves are similar to the TA decay curves, and the rapid biexciton decay is caused by nonradiative Auger recombination. A clear correlation is observed between the Auger recombination coefficient of the biexcitons and the average PL lifetime of the single excitons. Moreover, the Auger recombination lifetimes of the biexcitons are shorter in nanorods than in spherical nanocrystals of the same volume. Our study clarified that the Auger recombination rate is strongly affected by a high surface-state density.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据