4.6 Article

Dispersion-corrected density functional theory comparison of hydrogen adsorption on boron-nitride and carbon nanotubes

期刊

PHYSICAL REVIEW B
卷 84, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.165408

关键词

-

资金

  1. National Science Foundation (NSF) [EPS-1002410, EPS-1010094]
  2. Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic [Z40550506]
  3. Office Of The Director
  4. EPSCoR [1010094] Funding Source: National Science Foundation

向作者/读者索取更多资源

One of the main challenges for the future hydrogen economy is finding a safe and efficient way to store hydrogen. Materials with large surface areas, like carbon nanotubes and their analogues boron-nitride nanotubes, are being studied as potential candidates for this purpose. We perform density functional theory (DFT) and dispersion-corrected DFT (DFT-D) calculations of the adsorption of molecular hydrogen on graphene and boron-nitride sheets and compare the results against Moller-Plesset perturbation theory (MP2 and MP2.5). Our results indicate that DFT underestimates the binding energies, while DFT-D gives a very good agreement with the higher-order theory. Within DFT-D, we show that the binding energy of molecular hydrogen to the outer walls of carbon nanotubes is more than 40% larger than that of boron-nitride nanotubes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据