4.6 Article

Quantum memory coupled to cavity modes

期刊

PHYSICAL REVIEW B
卷 83, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.115415

关键词

-

资金

  1. Swiss NSF, NCCR Nanoscience Basel
  2. DARPA QUEST
  3. EU

向作者/读者索取更多资源

Inspired by spin-electric couplings in molecular magnets, we introduce in the Kitaev honeycomb model a linear modification of the Ising interactions due to the presence of quantized cavity fields. This allows to control the properties of the low-energy toric code Hamiltonian, which can serve as a quantum memory, by tuning the physical parameters of the cavity modes, like frequencies, photon occupations, and coupling strengths. We study the properties of the model perturbatively by making use of the Schrieffer-Wolff transformation and show that, depending on the specific setup, the cavity modes can be useful in several ways. They allow to detect the presence of anyons through frequency shifts and to prolong the lifetime of the memory by enhancing the anyon excitation energy or mediating long-range anyon-anyon interactions with tunable sign. We consider both resonant and largely detuned cavity modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据