4.6 Article

Multiscale magnetic study of Ni(111) and graphene on Ni(111)

期刊

PHYSICAL REVIEW B
卷 84, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.84.205431

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [SFB 668, SPP 145, WI1277/25]
  2. Hamburg Cluster of Excellence NANOSPINTRONICS

向作者/读者索取更多资源

We have investigated the magnetism of the bare and graphene-covered (111) surface of a Ni single crystal employing three different magnetic imaging techniques and ab initio calculations, covering length scales from the nanometer regime up to several millimeters. With low-temperature spin-polarized scanning tunneling microscopy we find domain walls with widths of 60-90 nm, which can be moved by small perpendicular magnetic fields. Spin contrast is also achieved on the graphene-covered surface, which means that the electron density in the vacuum above graphene is substantially spin polarized. In accordance with our ab initio calculations we find an enhanced atomic corrugation with respect to the bare surface, due to the presence of the carbon p(z) orbitals and as a result of the quenching of Ni surface states. The latter also leads to an inversion of spin polarization with respect to the pristine surface. Room temperature Kerr microscopy shows a stripelike domain pattern with stripe widths of 3-6 mu m. Applying in-plane-fields, domain walls start to move at about 13 mT and a single domain state is achieved at 140 mT. Via scanning electron microscopy with polarization analysis a second type of modulation within the stripes is found and identified as 330 nm wide V lines. Qualitatively, the observed surface domain pattern originates from bulk domains and their quasidomain branching is driven by stray field reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据