4.6 Article

Thermopower and resistivity in ferromagnetic thin films near room temperature

期刊

PHYSICAL REVIEW B
卷 83, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.83.100401

关键词

-

资金

  1. National Science Foundation [DMR-0847796]
  2. Nanoelectronics Research Initiative and Western Institute of Nanoelectronics

向作者/读者索取更多资源

We present measurements of thermopower (Seebeck coefficient) and electrical resistivity of a wide selection of polycrystalline ferromagnetic films with thicknesses ranging from 60-167 nm. For comparison, a copper film of similar thickness was measured with the same techniques. Both the thermal and electrical measurements, made as a function of temperature from 77-325 K, are made using a micromachined thermal isolation platform consisting of a suspended, patterned silicon-nitride membrane. We observe a strong correlation between the resistivity of the films and the thermopower. Films with higher resistivity and residual resistivity ratios, indicating a higher concentration of static defects such as impurities or grain boundaries, with rare exception show thermopower of the same sign, but with absolute magnitude reduced from the thermopower of the corresponding bulk material. In addition, iron films exhibit the pronounced low-temperature peak in thermopower associated with magnon drag, with a magnitude similar to that seen in bulk iron alloys. These results provide important groundwork for ongoing studies of related thermoelectric effects in nanomagnetic systems, such as the spin Seebeck effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据